初代星・初代銀河研究会

星周円盤の自己重力不安定性

松木場 亮喜(東北大学) 高橋 実道(国立天文台/工学院大) 杉村 和幸(東北大学) 大向 一行(東北大学)

outline

1. Introduction

- SMBH formation scenario
- gravitational stability of the disk
- 2. Model
- 3. Result
- 4. Summary

1. Introduction

Supermassive Black Hole(SMBH)

How were SMBHs formed in such a short time?

SMBH formation scenario

✓ Supermassive star (SMS) with 10⁵ M_{sun} is formed

- ✓ SMS collapse into a BH with a similar mass by GR effect
- A seed BH grows by accretion and/or merger

thermal evolution

- H₂ formation is suppressed by external far-UV radiation
 - photodissociation
 - $\mathrm{H}_2 + \gamma \to \mathrm{H_2}^* \to 2\mathrm{H}$
 - photodetachment

 $H^- + \gamma \rightarrow H + e$

H atomic cooling gas (red line)

 \Rightarrow isothermal evolution ~ 10⁴ K

without experiencing vigorous fragmentation

accretion rate:
$$\dot{M} \sim \frac{M_{\rm J}}{t_{\rm ff}} \sim 0.1 \ M_{\odot} \ {\rm yr}^{-1} \left(\frac{T}{10^4 \ {\rm K}}\right)^{3/2}$$

mass accretion onto the protostar

typical accretion rate $\sim 0.1 \text{ M}_{\text{sun}} \text{ yr}^{-1}$ very high rate

The disk may fragment by gravitational instability

The accretion rate has time variation

The evolution and final mass of SMS are affected Sakurai et al. (2015)

Does the disk fragmentation occur?

Latif & Schleicher (2015), Inayoshi & Haiman (2014) studied the gravitational stability of circum-stellar disks without chemical evolution

Toomre's Q value

$$Q = \frac{c_s \Omega}{\pi G \Sigma} \propto T^{1/2} \qquad \left(\begin{array}{c} Q > 1 & : \text{ stable} \\ Q < 1 & : \text{ unstable} \end{array}\right)$$
Toomre (1964)

depends on the temperature

The thermal and chemical evolutions are important

Li bound-bound transition

Li bound-bound transition becomes dominant opacity source 1000 < T [K] < 3000, $10^{-15} < \rho [g cm^{-3}] < 10^{-7}$

2. Model

model

one-dimensional axisymmetric and steady accretion disk

parameters M_{\star} : stellar mass \dot{M} : accretion rate

- Keplerian rotation
- ✓ We set $Q = \frac{c_s \Omega}{\pi G \Sigma} = 1$ ⇒ we obtain the density structure
- thermal evolution $\frac{\mathrm{d}e}{\mathrm{d}t} = \Gamma \Lambda$

heating : viscous heating, compressional heating

cooling : H₂ line emission, Li line emission, H⁻ free-bound emission,

 $H_2 CIE$, chemical cooling

✓ chemical evolution H, H₂, H⁺, H⁻, e

fragmentation condition and model setup

fragmentation condition

 $lpha\,{
m viscosity}$ Shakura & Sunyaev, (1973) $lpha=rac{
u\Omega}{c_s^2}>1$ Zhu et al. (2012)

- ✓ parameter ranges
 - stellar mass : 10 10⁵ M_{sun}
 - accretion rate : 10⁻³ 1 M_{sun} yr⁻¹
- ✓ outer boundary temperature and chemical abundance $(y(i) = \frac{n(1)}{n_H})$

T [K]	Η	H ₂	H+, e	H-	He
3000 K	0.99	10-8	10-6	10-18	8.33 × 10 ⁻²

3. Result

stellar mass dependency

accretion rate dependency

stellar mass : 10² M_{sun}, accretion rate : 10⁻² M_{sun} yr⁻¹

accretion rate dependency of the maximum α value

→ If $\dot{M} > 0.1 \ M_{\odot} \ yr^{-1}$, the disk fragments by gravitational instability.

critical accretion rate

$$\dot{M}_{\rm crit} = 0.17 \ M_{\odot} \ {\rm yr}^{-1} \left(\frac{T}{3500 \ {\rm K}}\right)^{3/2}$$

Li bound-bound emission

Li bound-bound emission does not work as the dominant cooling source

Mayer & Dushl (2005) assumed LTE

critical density

 $n_{crit}(e) > 10^{10} \text{ cm}^{-3}$

our results

 \Rightarrow outer region: n(e) is several order of magnitude

below the critical density

inner region: n(e) increases,

but the continuum optical depth exceeds unity.

Li line cooling rate is generally less than the LTE rate.

Summary

- We investigate the gravitational stability of the disk around the supermassive star with detailed treatment of chemical and thermal processes.
- result

The disk stability depends on only the accretion rate.

 $\dot{M} < 0.1 \text{ M}_{\text{SUN}} \text{ yr}^{-1} \implies \text{NOT fragment}$

 $\dot{M} > 0.1 \text{ M}_{\text{SUN}} \text{ yr}^{-1} \implies \text{fragment}$

If $\dot{M} < 10^{-2} M_{sun} yr^{-1}$, H₂ molecular is formed in the inner region.

Li bound-bound emission cooling does not change the thermal evolution of the disk.