

PopIII連星形成シミュレーションにむけて

- Toward Pop III binary formation simulations -

Collaborators: T. Matsumoto (Hosei, Princeton) T. Hosokawa (Kyoto), K. Omukai (Tohoku)

Introduction

• Pop III binary formation

Methods

• Code development

Results

• Early results from test calculations

Summary & Future plan

INTRODUCTION

Pop III formation until the end of accretion: radiation feedback and fragmentation

Grid-base simulation (spherical coords., Hosokawa+16)

SPH simulation (Susa+14)

- low resolution in outer region
- single radiation source

- low resolution in HII region
- diffusion of turbulence(?)

develop a new code, and then simulate Pop III binary formation

METHODS

Code development

New code for Pop III binary formation!!

Microphysics model for Pop III formation

Prim. chem. model (H, H₂, e, H⁺, H⁻, H₂⁺, (He))

chemical reactions

H photo-ion., H₂ photo-dis., H⁻ photo-det., H⁺ rec., H⁻/H₂⁺-channel & 3-body H₂ formation, etc.

cooling/heating processes

H photo-ion heat., H⁺ rec. cool., Ly α cool, free-free cool., H₂ line cool (w/ f_{esc}), chemical heat/cool, etc.

Pop III proto-stellar radiation

pre-calculated table of the results from stellar evolution code

(M, Mdot) \rightarrow (L, R) or (L, T_{eff})

 extension to on-the-fly calculation with stellar evolution code is straightforward

(≠ Authentic Radiation Transfer; Nakamoto, Umemura, Susa 2001)

level 1

level 2

A(d)RT Method

HEALPix (Górski+ 2005)

- originally for CMB analysis
- divide sphere into 12 x 4^{level} patches
- function: (level, ID) –> (heta , ϕ) is provided

ART (Adaptive Ray Tracing) method

(Abel&Wandelt 2002, Wise&Abel 2011)

level 0

- Rays are split with HEALPix to ensure the minimum # of rays penetrating each cell surface
- Using this method for RT of EUV/FUV photons

RESULTS

Early results from test calculations

Tests for radiation feedback: set-up

Basic set-up

- central radiation source (Pop III star)
- initially homogeneous H₂ gas
- nested grid with level_max = 13 (cell size in ith level: $h(i) = h(0)/2^i$)

•
$$n_{\rm H} = 10^9 \, {\rm cm}^{-3}$$
, $T_{\rm gas} = 200 {\rm K}$

•
$$L = 6 \times 10^5 L_{sun}$$
, $T_{eff} = 9000 K$

Tests for rad. FB: case of fixed gas density with $n_{\rm H} = 10^9 \text{ cm}^{-3}$ temperature T: 5000 stepstep=0 step=5075step=5000 10^{4} -50- -10^{4} 25 -T [K] y [au] T [K] 0- 10^{3} -10^{3} -25 -Stromgren radius -50 --75 - 10^{2} -10^{2} 10^{3} 10^{6} 10^{2} 10^{1} 10^{4} 10^{5} 50 -500 r [au] x [au] chem. abundance: step=5000, time=1.12e+03[yr] photo-react. rate: step=5000, time=1.12e+03[yr] k_{Hpi} 10^{3} 10^{-3} $k_{\rm H2pd}$ $k_{\rm Hpi,thin}$ 10^{0} 10^{-6} $k_{\rm H2pd,thin}$ 10^{-9} $k \, [\mathrm{s}^{-1}]$ 10^{-3} $k_{\rm H2pd,ss}$ y(i) y(H) 10^{-12} $y(H_2)$ 10^{-6} $y(H^+)$ 10^{-15} y(H- 10^{-9} 10^{-18} $y(H_{2}^{+})$ 10^{-12} 10^{-21} 10^{5} 10^{2} 10^{3} 10^{4} 10^{5} 10^{2} 10^{3} 10^{4} 10^{6} 10^{1} 10^{1} 10^{6} 13 r [au] r [au]

Tests for rad. FB: case of initial gas density with $n_H = 10^9$ cm⁻³ (w/ HD update)

Expansion of HII bubble seems properly calculated

Tests for collapse of rotational Bonor-Ebert spheres: set-up

• initial density profile:

1.2 x Bonor-Ebert sphere (T=200K)

- minimum cells per one Jeans length: 8
- maximum AMR level: 13

 \rightarrow minimum cell size: 6 AU

- sink formation density: 10¹²cm⁻³
- initial rigid rotation:

- β = (rotation energy)/(gravitational energy)
 - = 0.003, 0.01, 0.1

Tests for collapse of rotating BE spheres: $\beta = 0.003 \& 0.1$ cases

- Test radiation FB by turning on radiation at some time
- Assume strong radiation from each sink particle

← Pop III star with 100 M_{sun} & 10⁻³ M_{sun} /yr

SUMMARY & FUTURE PLAN

Summary

Aim of the project

• simulating Pop III binary formation

Current status

- development of code with AMR + Pop III phys. + RT almost done
- testing the code with a problem of collapse of rotational BE sphere

Future plan

- to make sure that the code properly calculates the radiation feedback from protostars
- to perform simulations from cosmological initial conditions

Pop III binary formation from Big Bang!