PopIII連星形成シミュレーションにむけて －Toward Pop III binary formation simulations－

Kazu Sugimura（Tohoku）

TOHOKU

Collaborators：T．Matsumoto（Hosei，Princeton）
T．Hosokawa（Kyoto），K．Omukai（Tohoku）

Contents

\square Introduction

- Pop III binary formation
\square Methods
- Code development
\square Results
- Early results from test calculations
\square Summary \& Future plan

INTRODUCTION

\square From Big Bang to first objects (= Pop III stars)

(Yoshida+08, Hosokawa+11,16, Hirano+14,15, Susa+14, etc.)

$$
z \sim 20-30
$$

Understanding this process is one of the main objectives for theoretical astrophysics
\square Are Pop III stars formed alone?

single star binary/multiple

GW events?

And, how is the property of binaries, if formed?
We know little about it...

Pop III formation until the end of accretion: radiation feedback and fragmentation

\square Grid-base simulation
(spherical coords., Hosokawa+16)

- low resolution in outer region
- single radiation source
\square SPH simulation (Susa+14)

- low resolution in HII region
- diffusion of turbulence(?)
develop a new code, and then simulate Pop III binary formation

METHODS

Code development

Strategy for code development

self-gravitational (M)HD
AMR

(Matsumoto 2007)
chemistry, cooling/heating

Pop III physics

(Hosokawa+ 2016)
\checkmark Radiation transfer
\checkmark EUV, FUV

Adaptive Ray-Tracing

(Abel\&Wandelt 2002)

New code for Pop III binary formation!!

Adaptive Mesh Refinement
= high resolution where you need it

- Seflgravity
- Resistivity
- Sink particle
minimum unit $=$ cell grid = collection of cells

Oct-tree type block structure

Microphysics model for Pop III formation

(c.f., Hosokawa+ 2016)
\square Prim. chem. model ($\left.\mathrm{H}, \mathrm{H}_{2}, \mathrm{e}, \mathrm{H}^{+}, \mathrm{H}^{-}, \mathrm{H}_{2}^{+},(\mathrm{He})\right)$

- chemical reactions

H photo-ion., H_{2} photo-dis., H^{-}photo-det., H^{+}rec., $\mathrm{H}^{-} / \mathrm{H}_{2}^{+}-$channel \& 3-body H_{2} formation, etc.

- cooling/heating processes

1-zone calc. w/ our chem. model
H photo-ion heat., H^{+}rec. cool., Ly α cool, free-free cool., H_{2} line cool ($\mathrm{w} / \mathrm{f}_{\text {esc }}$), chemical heat/cool, etc.
\square Pop III proto-stellar radiation

- pre-calculated table of the results from stellar evolution code

$$
(M, M d o t) \rightarrow(L, R) \text { or }\left(L, T_{\text {eff }}\right)
$$

- extension to on-the-fly calculation with stellar evolution code is straightforward

A(d)RT Method

\square HEALPix (Górski+ 2005)

- originally for CMB analysis
- divide sphere into $12 \times 4^{\text {level }}$ patches
- function: (level, ID) $->(\theta, \phi)$ is provided
\square ART (Adaptive Ray Tracing) method (Abel\&Wandelt 2002, Wise\&Abel 2011)
- Rays are split with HEALPix to ensure the minimum \# of rays penetrating each cell surface
- Using this method for RT of EUV/FUV photons

Preliminary!!

RESULTS

Early results from test calculations

Tests for radiation feedback: set-up

\square Basic set-up

- central radiation source (Pop III star)
- initially homogeneous H_{2} gas
- nested grid with level_max $=13$ (cell size in ith level: $h(i)=h(0) / 2^{i}$)
- resolution at each level:

$$
\frac{(8 \times 8 \times 8)}{\# \text { of cells }} \times \frac{(8 \times 8 \times 8)}{\# \text { of grids }}
$$

\square Model parameters

$$
\mathrm{n}_{\mathrm{H}}=10^{9} \mathrm{~cm}^{-3}, \mathrm{~T}_{\mathrm{gas}}=200 \mathrm{~K}
$$

$$
\text { . } L=6 \times 10^{5} L_{\text {sun }}, T_{\text {eff }}=9000 \mathrm{~K} \leftarrow \text { Pop III star }\left(100 M_{\text {sun }} \& 10^{-3} M_{\text {sun }} / y r\right)
$$

Tests for rad. FB: case of fixed gas density

 with $\mathrm{n}_{\mathrm{H}}=10^{9} \mathrm{~cm}^{-3}$
photo-react. rate: step $=5000$, time $=1.12 \mathrm{e}+03[\mathrm{yr}]$

Tests for rad. FB: case of initial gas density with $\mathrm{n}_{\mathrm{H}}=10^{9} \mathrm{~cm}^{-3}$ (w/ HD update)

Expansion of HII bubble seems properly calculated

\square Tests for collapse of rotational Bonor-Ebert spheres: set-up

- initial density profile:
$1.2 \times$ Bonor-Ebert sphere ($\mathrm{T}=200 \mathrm{~K}$)
- minimum cells per one Jeans length: 8
- maximum AMR level: 13
\rightarrow minimum cell size: 6 AU
- sink formation density: $10^{12} \mathrm{~cm}^{-3}$
- initial rigid rotation:

$$
\begin{aligned}
\beta & =(\text { rotation energy }) / \text { (gravitational energy) } \\
& =0.003,0.01,0.1
\end{aligned}
$$

으아
Tests for collapse of rotational BE spheres: $\beta=0.01$ case

$\square \square$ Tests for collapse of rotating BE spheres: $\beta=0.003 \& 0.1$ cases

$$
\beta=0.003
$$

$$
\beta=0.1
$$

Tests for collapse of rotating BE spheres: rad. FB test

case of $\beta=0.1$
DB: data63900.vtk Time:7.69254e+06
blue: density red: EUV

- Test radiation FB by turning on radiation at some time
- Assume strong radiation from each sink particle
\leftarrow Pop III star with $100 \mathrm{M}_{\text {sun }} \& 10^{-3} \mathrm{M}_{\text {sun }} / \mathrm{yr}$

SUMMARY \& FUTURE PLAN

\square

Summary

Aim of the project

- simulating Pop III binary formation

Current status

- development of code with AMR + Pop III phys. + RT almost done
- testing the code with a problem of collapse of rotational BE sphere

Future plan

- to make sure that the code properly calculates the radiation feedback from protostars
- to perform simulations from cosmological initial conditions

Pop III binary formation from Big Bang!

