Evolution of Metal－Poor Massive Stars
 （低金属大質量星の進化）

吉田 敬

東京大学大学院理学系研究科天文学專攻

初代星•初代銀河研究会2018
2018年11月20日 茨城大学理学部

Final Structures of $Z=Z \odot$ and 0 Stars

- H and He burnings
(Woosley et al. 2002)
- Evolution to red/blue supergiants
- No or less effective mass loss
- Pair instability SNe and pulsational pair-instability

Evolution of Metal－Poor Massive Stars

－Metal－free（ $Z=0$ ）massive stars
－H and He burnings
－Evolution to red／blue supergiants
－Effect of rotation
\Rightarrow Evolution to red／blue supergiants
\Rightarrow Production of \mathbf{N} and odd－Z elements in \mathbf{H} shell burning
\square Chemically homogeneous evolution
－Pair instability SNe
－Massive stars with $Z \leqq 10^{-4}$
－Evolution to red／blue supergiants
－Current status of our study on metal－poor massive stars

\underline{H} and He burnings in $Z=0$ Stars

Evolution on $\log \boldsymbol{T}_{\mathbf{C}}-\log \rho_{\mathrm{C}}$ diagram

No CNO elements in $Z=0$ stars
－pp－chain
－ 3α reaction $+\mathbf{C N O}$ cycles

H and He burnings in $Z=0$ Stars

－Evolution on convective core during \mathbf{H} burning

（Marigo et al．2001）

HR diagram of $Z=0$ Stars

（Marigo et al．2001）
－Blue supergiant $\mathbf{1 0}<\boldsymbol{M} \boldsymbol{< 5 0} M$ \odot
－Red supergiant $M<\mathbf{1 0} M$ ． after He burning
$M>50 M$ ．
during He burning

Fig．2．Zero－metal evolutionary tracks（solid lines）for selected initial masses（in M_{\odot} ）as in－ dicated．The evolutionary track of the $\left(1 M_{\odot}\right.$ ， $Z=0.004$ ）model，calculated by Girardi et al． （2000），is also shown for comparison（dotted line）

Effect of Rotation

－Effect of rotation
－Extra mixing
－Meridional circulation and horizontal turbulence
（Larger cores）
Favoring red－ward evolution（？），Homogeneous chemical evolution
Strong H shell burning
－Mass loss
－Different treatment of angular momentum transport
－Advection \longrightarrow Genec，Franec
－Diffusion approximation
Kepler，MESA，HOSHI

Effect of Rotation

－HR－diagram

（Ekström et al．2008）

Effect of Rotation

－Nucleosynthesis through strong H shell and He burnings

－Transport of CNO elements in He core to \mathbf{H} shell by rotational mixing \mathbf{N} production by CNO cycle in \mathbf{H} shell

Na and Al produced from ${ }^{22} \mathrm{Ne}$

Effect of Rotation

－Nitrogen production is rotating Pop．III stars

（Takahashi et al．2014）
$M_{\mathrm{N}} \sim 10^{-4} \mathbf{- 0 . 1} M_{\odot}$ in rotating models for Ekström＋08，Takahashi＋14 Rotating models in Yoon＋12 indicate less N enhancement．
－Proton ingestion to He shell in C－core burning
N production in non－rotating $\sim \mathbf{2 0} M \odot$ models

Effect of Rotation

－ Na and Al

（Takahashi et al．2014）

${ }^{22} \mathrm{Ne}$ production：${ }^{14} \mathrm{~N}(\alpha, \gamma){ }^{18} \mathrm{~F}\left(\beta^{+}\right){ }^{18} \mathrm{O}(\alpha, \gamma)^{22} \mathrm{Ne}$

${ }^{22} \mathrm{Ne}(n, \gamma){ }^{23} \mathrm{Ne}(\beta-)^{23} \mathrm{Na}$Al
${ }^{22} \mathrm{Ne}(\alpha, \boldsymbol{n})^{\mathbf{2 5}} \mathbf{M g}(\boldsymbol{n}, \gamma)^{\mathbf{2 6}} \mathbf{M g}(\boldsymbol{n}, \gamma)^{27} \mathbf{M g}(\beta-)^{27} \mathrm{Al}$

Effect of Rotation

－Chemically homogeneous evolution（CHE）
Transport by meridional circulation and Spruit－Tayler dynamo

$20 M \odot$ non－rotating
Normal evolution（NE）

$20 M \odot$ rotating（ $v_{i} / v_{K}=0.6$ ）
CHE
（Yoon et al．2012）

Effect of Rotation

－Chemically homogeneous evolution（CHE）
HR diagram for $20 M \odot$ models

（Yoon et al．2012）

（Data from Yoon et al．2012）
TE：Transition evolution

Effect of Rotation

Final fates（Yoon et al．2012）
Final fates of rotating massive Pop III stars

吉田 敬 初代星•初代銀河研究会2018 2018年11月20日 茨城大学

Pair Instability SNe

$e^{-} e^{+}$pair production after \mathbf{C} burning \longrightarrow Dynamical evolution O and Si burnings for a very short time scale（ \sim a few minutes） Pair instability supernova！

Mass range
 $M_{\mathrm{He}} \sim 64-133 M_{\odot}$（Heger \＆Woosley 2002）
$M \sim 145-260 M \odot \quad$（Takahashi et al．2016）

－Pulsational pair instability
Eruptive mass loss
$M_{\mathrm{He}} \sim 40-64 M_{\odot}($ Heger $\&$ Woosley 2002）
（Woosley et al．2007；Yoshida et al．2016）

Yields of Pop．III Pair Instability SNe

－No current observed metal－poor star matches with the PISN abundance． （Takahashi et al．2018）

－No significant difference between rotating and nonrotating models． $[\mathrm{Na} / \mathrm{Mg}] \sim-1.5 ;[\mathrm{Ca} / \mathrm{Mg}] \sim 0.5-1.3$

Evolution of Metal－Poor Stars

- Evolution of $Z=10^{-10}-10^{-4}$ stars up to C ignition
（Cassisi \＆Castellani 1993）

－Favoring red－ward evolution for higher Z massive stars Similar Z dependence is also seen in Hirschi（2007）．

Z Dependence of Massive Star Evolution

－Evolution of metal－poor massive stars up to central C－burning
（TY，Tanikawa，Kinugawa，Umeda，Takahashi，in prep．）
－Stellar evolution code：
HOngo Stellar Hydrodynamics Investigator（HOSHI）code（tentative）
－Initial mass：

$$
M_{\mathrm{i}}=8,10,13,16,20,25,32,40,50,65,80,100,125,160 M_{\odot}
$$

－Metallicity：$Z=1.41 \times\left(10^{-10}, 10^{-8}, 10^{-7}, 10^{-6}, 10^{-4}\right)$
Evolution from ZAMS until $\log \boldsymbol{T}_{\mathrm{C}}=\mathbf{9 . 0}$［K］
Calibration of overshoot parameter：similar to Brott et al．（2011）
－No mass loss

HR diagram

－$Z=1.41 \times 10^{-10}$
$\mathbf{1 0}<\boldsymbol{M}<\mathbf{5 0} M \odot$ stars
Blue／vellow supergiant

$Z=1.41 \times 10^{-8}->1.41 \times 10^{-6}$

Toward red supergiant

These models will be used for population synthesis．

吉田 敬 初代星•初代銀河研究会2018 2018年11月20日 茨城大学

Summary

－Metal－free（ $Z=0$ ）massive stars
pp chain and $3 \alpha+$ CNO cycle in H burning
－Blue supergiants in～10－50 M_{\odot}（depending on overshoot parameter）
－Effect of rotation
\Rightarrow Favoring red－ward evolution
Production of \mathbf{N} and odd－Z elements in \mathbf{H} shell burning
\Rightarrow Chemically homogeneous evolution
－Pair instability SNe
No current observed metal－poor star having PISN abundance
－Massive stars with $Z \leqq 10^{-4}$
－Higher Z stars favor red－ward evolution for $Z \sim 10^{-8}-10^{-6}$

