Carbon－enhanced metal－poor stars as a consequence of inhomogeneous metal mixing

Tilman Hartwig

Carbon-enhanced metal-poor stars

Saga database, Suda-san

Are faint SNe the progenitors of CEMP stars?

- Semi-analytical models: $\mathbf{5 0 - 8 0 \%}$ faint (Ji+15, de Bennassutti+16, Hartwig+18a)
- Fitting 200 observed EMP stars with theoretical SN yields:
10\% faint (Ishigaki+18)
- SN rate is only half the SFR:
~50\% faint? (Horiuchi+11)
- 11 CEMP-no stars in binaries (Arentsen+18)

Hartwig+18

Is iron well mixed with alpha-elements?

Probability that ejected elements are corporated into secondgeneration star (Sluder+16)

After PopIII SN: several clumps may form

New Scenario

Carbon-enhanced metal-poor stars as a consequence of inhomogeneous mixing of metals in the interstellar medium?

New Scenario

Characteristic Timescales

Kelvin-Helmholtz: $t_{\mathrm{KH}}=0.1 \mathrm{Myr}\left(\frac{M_{*}}{10 \mathrm{M}_{\odot}}\right)^{2}\left(\frac{R_{*}}{5.3 \mathrm{R}_{\odot}}\right)^{-1}\left(\frac{L_{*}}{5750 \mathrm{~L}_{\odot}}\right)^{-1}$
LW dissociation: $\quad t_{\text {dis }}=0.2 \mathrm{Myr}\left(\frac{M_{\text {clump }}}{1000 \mathrm{M}_{\odot}}\right)^{1 / 3}\left(\frac{n}{10^{3} \mathrm{~cm}^{-3}}\right)^{2 / 3}\left(\frac{D}{10 \mathrm{pc}}\right)^{2}$
Collapse time: $t_{\text {coll }}=\max \left(\mathrm{t}_{\mathrm{ff}} \mathrm{t}_{\text {cool }}\right)$
Cooling Rate: $\frac{\Lambda_{\mathrm{CII}}}{\mathrm{erg} \mathrm{cm}^{-3} \mathrm{~s}^{-1}}=4.8 \times 10^{-21}\left(\frac{n_{H}}{10^{3} \mathrm{~cm}^{-3}}\right)^{2} \exp \left(-\frac{92 \mathrm{~K}}{T}\right) \times 10[\mathrm{C} / \mathrm{H}]$

Condition: $\quad \mathbf{t}_{\text {coll1 }}+\mathrm{t}_{\mathrm{KH}}+\mathrm{t}_{\text {diss }}<\mathrm{t}_{\text {coll2 }}$

$$
\begin{aligned}
& \Delta[\mathrm{C} / \mathrm{H}]>[\mathrm{C} / \mathrm{H}]+3.6+ \\
& \log _{10}\left(\frac{13000+2 \times 10^{5} d_{10}^{2} n_{3}^{2 / 3}+1.5 \times 10^{6} n_{3}^{-1 / 2}}{1.7 \times 10^{6}} n_{3}\right)
\end{aligned}
$$

Methodology
Tilman Hartwig

Characteristic Timescales, illustrated

Methodology

Required Inhomogeneity

Comparison to Observations

$\Delta[\mathrm{C} / \mathrm{H}]$	
0	0.5
1	1.5

- 0-22\% of CEMP-no stars can be explained for $\Delta[\mathrm{C} / \mathrm{H}] \sim 1$
- Up to 89% for $\Delta[\mathrm{C} / \mathrm{H}] \sim 2$
* Follow-up simulations with Arepo
* General importance of inhomogeneous mixing for interpretation of EMP stars

A novel formation scenario for carbon-enhanced metal-poor stars

- 0-89\% of CEMP-no stars could have formed by inhomogeneous metal mixing
- Caveats: only carbon (no dust or oxygen), simplistic analytical treatment
- Next step: 3D simulations
- Inhomogeneous metal mixing: general importance for interpreting stellar abundance patterns

Summary

