

初代星超新星のフィードバックを考慮した金属欠乏星形成

MNRAS in printing (arXiv:1808.09515)

初代星·初代銀河研究会2018@茨城 2018年11月19日(月)15:30 Gen Chiaki John Wise (Konan-U, Georgia Tech)

- ✓ First metal-free stars (Pop III stars) provide
 - first metal and dust
 - first light.

✓ Metal-poor stars (Pop II stars)

- "living fossils" of early metal enrichment if low-mass (< $1 M_{\odot}$; long-lived)
- gravitational wave sources (binary neutron stars or black holes) if massive

Fragmentation: precursor of low-mass star formation

Two Fragmentation modes: disk fragmentation/filament fragmentation see Chiaki et al. (2016); Yoshida-san's talk

Various frag. modes in low-Z clouds

Ideal initial condition: clouds with uniform metals added by hand

In this work, we run simulation with more realistic initial condition

- Non-uniform distribution of metals
 - This affects cooling rate
- Turbulence induced by SN
 - Enhanced initial density perturbation

Earlier works

Ritter et al. (2012, 2015, 2016) Sluder et al. (2015)

✓ Cosmological initial condition
 ✓ Self-enrichment of a Pop III cloud
 ✓ Z = 0.001-0.01 Z_☉

Smith et al. (2015)

✓ Cosmological initial condition ✓ Enrichment of a neighboring halo ✓ Z = 2 × 10⁻⁵ Z_☉

However, they employ present-day dust model.

Pollack et al. (1994)

In the early Universe, dust amount is smaller than in the present-day.

(Umeda & Nomoto 2002; Nozawa et al. 2003, 2007)

Also, grain growth is important to enhance dust cooling rate.

Chiaki et al. (2015; 2016)

In this work, we elaborate dust models

✓ Supernova dust model✓ Grain growth

Initial condition

AMR/N-body Code: ENZO Chemistry: GRACKLE (modified) Box size: 300 ckpc (periodic) Top grid: 64^3 ($m_{\rm DM}$ =2.86 × 10³ M $_{\odot}$) Initial redshift: 140 Level: 2 \rightarrow **37**

Refinement criterion: (i) gas mass in a cell $M_g > 3 \times 2^{-0.2L} M_{ref, g}$ (ii) DM mass in a cell $M_d > 3 M_{ref, d}$ (iii) Jeans length $\lambda_J < 64 \Delta x$

Pop III star formation criterion: (i) gas density $n_{\rm H} > 10^6 \,{\rm cm}^{-3}$ (ii) convergent flow $\nabla \cdot v < 0$ (iii) $t_{\rm cool} < t_{\rm dyn}$ (iv) metallicity $Z < 5 \times 10^{-5} \,{\rm Z}_{\odot}$ (v) H₂ fraction $f_{\rm H2} > 10^{-3}$

Pop III star sampling mass function

 $f(\log M_{\text{PopIII}}) = M^{-1} \exp\left[-\left(\frac{M_{\text{char}}}{M_{\text{PopIII}}}\right)^{1.6}\right]$ $M_{\text{char}} = 20 \text{ M}_{\odot}$

Box size 300 comoving kpc

Supernova and metal/dust dispersion Dust model for 13 M_{\odot} Pop III SN

Shocked gas falls back and enriched cloud collapses

 $10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}$ Density (cm⁻³) Consistent with the results of

- Ritter et al. (2012, 2015, 2016);
- Sluder et al. (2015);
- Chiaki et al. (2018) for CCSNe!

Metallicity is uniform within 0.1 pc in the recollapsing region.

10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹ 10 Density (cm⁻³)

Turbulent is enhanced by a factor of three but still Mach number < 1.

Density (cm⁻³)

Grain growth is properly solved!

Filamentary structure induced by dust cooling

Density (cm^{-3})

Current work: what is final fate of this protostar and filaments?

with a sink particle technique (Regan et al.)

FF: Filament Fragmentation DF: Disk Fragmentation NF: No Fragmentation

Summary

We follow the whole story from Pop III to Pop II star formation. Including **SN dust model** and **grain growth**.

We find a star-forming cloud is formed through internal enrichment. Metallicity of the recollapsing region is $2.6 \times 10^{-4} Z_{\odot}$. consistent with that of observed metal-poor stars.

Current/Future works

To see the further evolution of the protostars.

To simulate for **C-enhanced** abundance ratio.

To extend simulation box size and time to see the formation of **multiple enrichment events**.

Why **2.6** × 10⁻⁴ Z_{\odot} ?

Simple prediction of metallicity:

$$Z_{\rm pred} = \frac{M_{\rm met}}{M_{\rm cloud}} = 4 \times 10^{-2} \ \rm Z_{\odot}.$$

 $M_{\rm met}$: ejected metal mass (1 M_{\odot}) $M_{\rm cloud}$: cloud mass (2000 M_{\odot})

Enrichment model in this simulation

$$Z_{\rm recol} = \frac{f_{\rm fb} M_{\rm met}}{M_{\rm cloud}} = N_{\rm clump} \frac{\pi r^2}{4\pi R^2} \frac{M_{\rm met}}{M_{\rm cloud}} = 3 \times 10^{-4} \, \rm Z_{\bigodot},$$

$$N_{\rm clump} : \text{number of clumps which interrupt metal dispersion (3 r: clump radius (~5 pc))}$$

$$R: \text{distance of clump from SN (~50 pc)}$$

Effect of grain growth

Tsuribe & Omukai (2006)

Especially, **dust grains** is crucial for the low-mass fragments.

(Omukai 2000; Schneider et al. 2003; Safranek-shrader et al. 2014)

Dust cooling operates <u>high density</u> (~10¹⁴ cm⁻³). = low Jeans mass (~0.1 M_☉) → Filament Fragmentation

Mass scale of Pop III stars

Low mass (< 1 M_{\odot})

Some researches predict **DF**.

Clark et al. (2011)

Greif et al. (2012)

Note that the final fate of the fragments is <u>still</u> <u>unknown</u>.

Accretion onto primary protostar (Hosokawa et al. 2016)

High mass (10-1000 $M_{\odot})$

Clouds do not fragment.

simplification (2D RHD in accretion phase).

Carbon grain

Sticking coefficient of grain growth

In this study, the sticking coeff. α_i is set unity. (Kozasa & Hasegawa 1987, 1989)

for $\alpha_i = 0.1$, the grain growth hardly affect the critical metallicity Z_{cr} as $(Z_{cr}/10^{-5.5} Z_{\odot}) = (f_{dep,0}/3.5)^{-0.92}$

 $\checkmark \alpha_i$ is still uncertain but considered to be 0.1–1

✓ Several groups estimate the sticking coefficient.

Theoretical approachLeitch-Delvin & Williams (1985).•interaction of a lattice and an incident particle

Carbon atom \rightarrow Graphite α =0.4Deuterium \rightarrow Silicate α =1.0Deuterium \rightarrow Oxide α =0.5

Dust growth rate for grain species i

Laboratory experiment

Tachibana et al. (2011).

"Although the data are scattered to some extent, all of the measured condensation fluxes are close to the ideal value. This indicates that $\alpha_c (=\alpha_i)$ is close to unity irrespective of α_e (= evaporation efficiency), because the effect of re-evaporation from the condensates must be small due to the large values of S."

Method: modified GRACKLE + ENZO Huge reaction networks

48 primordial chemistry

H + $\mathrm{e^-} \rightarrow \mathrm{H^+}$ + 2 $\mathrm{e^-}$	$HD + H \rightarrow H_2 + D$
${\rm H^+}$ + ${\rm e^-}$ \rightarrow H + γ	$\mathrm{HD} + \mathrm{H}^+ \rightarrow \mathrm{H}_2 + \mathrm{D}^+$
$\text{He} + \text{e}^- \rightarrow \text{He}^+ + 2 \text{ e}^-$	$\rm D + H^+ \rightarrow HD^+ + \gamma$
$\mathrm{He^{+}} + \mathrm{e^{-}} \rightarrow \mathrm{He} + \gamma$	$\mathrm{D^{+}}$ + H \rightarrow HD ⁺ + γ
$\mathrm{He^{+}} + \mathrm{e^{-}} \rightarrow \mathrm{He^{++}} + 2\mathrm{e^{-}}$	$HD^+ + e^- \rightarrow H + D$
$\text{He}^{++} + \text{e}^- \rightarrow \text{He}^+ + \gamma$	${\rm D} + {\rm e}^- ightarrow {\rm D}^- + \gamma$
$H + e^- \rightarrow H^- + \gamma$	$\rm D^+ + D^- \rightarrow 2D$
$H + H^- \rightarrow H_2 + e^-$	$\mathrm{H^{+}} + \mathrm{D^{-}} \rightarrow \mathrm{D} + \mathrm{H}$
$H + H^+ \rightarrow H^+_{a} + \gamma$	$H^- + D \rightarrow H + D^-$
u^+ , u , u , u , u , u	$D^- + H \rightarrow D + H^-$
$H_2^+ + H \rightarrow H_2^+ + H^+$	$D^- + H \rightarrow HD + e^-$
$H_2 + H^+ \rightarrow H_2^+ + H$	$H + H + H \rightarrow H_2 + H$
$\mathrm{H}_2 + \mathrm{e}^- \rightarrow 2\mathrm{H} + \mathrm{e}^-$	$H + H + H_2 \rightarrow H_2 + H_2$
$H_2 + H \rightarrow 3H$	$H_2 + H_2 \rightarrow H + H + H_2$
$\mathrm{H^-} + \mathrm{e^-} \rightarrow \mathrm{H} + 2\mathrm{e^-}$	$H + H \rightarrow H^+ + e^- + H$
$H^- + H \rightarrow 2H + e^-$	$\text{He} + \text{H}^+ \rightarrow \text{He}^+ + \text{H}$
$\rm H^- + H^+ \rightarrow 2H$	${ m He^+}$ + ${ m H}$ $ ightarrow$ ${ m He}$ + ${ m H^+}$
$\mathrm{H^-} + \mathrm{H^+} \rightarrow \mathrm{H_2^+} + \mathrm{e^-}$	${ m He}$ + ${ m H}^+$ $ ightarrow$ ${ m HeH}^+$ + γ
$H_2^+ + e^- \rightarrow 2H$	${\rm He} + {\rm H}^+ \rightarrow {\rm He} {\rm H}^+ + \gamma$
$H_2^+ + H^- \rightarrow H + H_2$	$\text{He} + \text{H}_2^+ \rightarrow \text{HeH}^+ + \text{H}$
$\bar{D^+} + e^- \rightarrow D + \gamma$	${ m He^+}$ + H $ ightarrow$ HeH ⁺ + γ
$D + H^+ \rightarrow D^+ + H$	$\text{HeH}^+ + \text{H} \rightarrow \text{He} + \text{H}_2^+$
$D^+ + H \rightarrow D + H^+$	$HeH^+ + e^- \rightarrow He + H$
$D + H \rightarrow HD + \gamma$	
$D + H_2 \rightarrow H + HD$	
$\mathrm{HD^{+}}$ + $\mathrm{H} \rightarrow \mathrm{H^{+}}$ + HD	
$D^+ + H_2 \rightarrow H^+ + HD$	

H₂ formation on grain surfaces_{H2}

38 metal chemistry

$H + CH \rightarrow C + H_2$
$\mathrm{H} + \mathrm{CH}_2 \rightarrow \mathrm{CH} + \mathrm{H}_2$
$H + OH \rightarrow H_2 + O$
$H + H_2O \rightarrow OH + H_2$
$H + O_2 \rightarrow OH + O$
$C + H_2 \rightarrow CH + H$
$O + H_2 \rightarrow OH + H$
$H^+ + O \rightarrow O^+ + H$
$H_2 + CH \rightarrow CH_2 + H$
$H_2 + OH \rightarrow H_2O + H$
$2OH \rightarrow H_2O + O$
$OH + CO \rightarrow CO_2 + H$
$C + H \rightarrow CH + \gamma$
$C + OH \rightarrow CO + H$
$C + O_2 \rightarrow CO + O$
$O + H \rightarrow OH + \gamma$
$2O \rightarrow O_2 + \gamma$
$O + CH \rightarrow CO + H$
$O + OH \rightarrow O_2 + H$
$H^+ + OH \rightarrow OH^+ + H$
$H^+ + H_2O \rightarrow H_2O^+ + H$

 $H^+ + O_2 \rightarrow O_2^+ + H$ $C^+ + OH \rightarrow CO^+ + H$ $C^+ + O_2 \rightarrow O^+ + CO$ $O^+ + H \rightarrow H^+ + O$ $O^+ + H_2 \rightarrow OH^+ + H$ $OH^+ + H_2 \rightarrow H_2O^+ + H$ $H_2O^+ + H_2 \rightarrow H_3O^+ + H$ $CO^+ + H \rightarrow H^+ + CO$ $C^+ + e \rightarrow C + \gamma$ $OH^+ + e \rightarrow O + H$ $H_2O^+ + e \rightarrow OH + H$ $H_2O^+ + e \rightarrow O + H_2$ $H_3O^+ + e \rightarrow H_2O + H$ $H_3O^+ + e \rightarrow OH + 2H$ $O_0^+ + e \rightarrow 2O$ $\tilde{\mathrm{H}_2} + \mathrm{C} \to \mathrm{CH}_2 + \gamma$ $Si + OH \rightarrow SiO + H$ $Si + O_2 \rightarrow SiO + O$ $SiO + OH \rightarrow SiO_2 + H$

10 grain growth reactions

 $\begin{array}{l} Si(g) \to Si(s) \\ Fe(g) \to Fe(s) \\ 2Mg(g) + SiO(g) + 3H_2O(g) \to Mg_2SiO_4(s) + 3H_2(g) \\ Mg(g) + SiO(g) + 2H_2O(g) \to MgSiO_3(s) + 2H_2(g) \\ 3Fe(g) + 4H_2O(g) \to Fe_3O_4(s) + 4H_2(g) \\ C(g) \to C(s) \\ SiO_2(g) \to SiO_2(s) \\ Mg(g) + H_2O(g) \to MgO(s) + H_2(g) \\ Fe(g) + S(g) \to FeS(s) \\ 2Al(g) + 3H_2O(g) \to Al_2O_3(s) + 3H_2(g) \end{array}$

(g) gas-phase, (s) solid-phase

Method: modified GRACKLE + ENZO Radiative cooling

C II, C I, and O I fine-structure cooling

calculate level populations

opacity for each transition line (Sobolev approx.) integrate cooling rates

H₂ ro-vibration transition line cooling

3 vibrational levels20 rotational levels

HD rotation transition line cooling

3 vibrational levels

CO, OH, and H_2O rotation transition line

interpolated from tables presented by CO (Omukai et al. 2010) OH (Neufeld & Kaufman 1993) H_2O (Neufeld et al. 1995) from N_{mol} , T, and n_{H2} of each cell

Method: modified GRACKLE + ENZO Add fields

<pre>if (MultiSpecies) { DataLabel[i++] = ElectronName; DataLabel[i++] = HIName; DataLabel[i++] = HEIName; DataLabel[i++] = HeIName; DataLabel[i++] = HeIIName; DataLabel[i++] = HeIIName; DataLabel[i++] = H2IName; DataLabel[i++] = H2IName; DataLabel[i++] = DIName; DataLabel[i++] = DIName; DataLabel[i++] = HDIName; PataLabel[i++] = HDIName; PataLabel[i++] = HDIName; DataLabel[i++] = HDIName; PataLabel[i++] = HeHIIName; PataLabel[i++] = HEHIINAM</pre>	e ⁻ DataLabel[i+ H DataLabel[i+ H ⁺ DataLabel[i+ He DataLabel[i+ He ⁺ DataLabel[i+ He ⁺ DataLabel[i+ He ⁺⁺ DataLabel[i+ H- DataLabel[i+ H ₂ DataLabel[i+ H ₂ DataLabel[i+ DataLabel[i	25 > -] = -] <td< th=""><th><pre>10) { 10) { 10) { 100 classes cla</pre></th><th>$\begin{array}{c} C \\ C^{+} \\ CO \\ CO_{2} \\ O \\ OH \\ H_{2}O \\ O_{2} \\ Si \\ SiO \\ SiO_{2} \\ CH \\ CH_{2} \\ CO^{+} \\ O^{+} \\ OH^{+} \\ H_{2}O^{+} \\ H_{3}O^{+} \\ O_{2}^{+} \\ Mg \\ AI \\ S \\ Fe \end{array}$</th></td<>	<pre>10) { 10) { 10) { 100 classes cla</pre>	$\begin{array}{c} C \\ C^{+} \\ CO \\ CO_{2} \\ O \\ OH \\ H_{2}O \\ O_{2} \\ Si \\ SiO \\ SiO_{2} \\ CH \\ CH_{2} \\ CO^{+} \\ O^{+} \\ OH^{+} \\ H_{2}O^{+} \\ H_{3}O^{+} \\ O_{2}^{+} \\ Mg \\ AI \\ S \\ Fe \end{array}$
✓ 15 primordial species ✓ 23 metal species	} if (MultiSpeci DataLabel[i+- DataLabel[i+- DataLabel[i+- DataLabel[i+- DataLabel[i+- DataLabel[i+- DataLabel[i+- DataLabel[i+-	2S > -] = -] = -] = -] = -] =	20) { SiMName; FeMName; Mg2SiO4Name; MgSiO3Name; Fe3O4Name; AmCName; SiO2DName;	Si (dus Fe (du Mg₂Si0 MgSiO Fe₃O₄ C (dus SiO₂ (c

Si (dust) Fe (dust) Mg₂SiO₄ (dust) MgSiO₃ (dust) Fe₃O₄ (dust) C (dust) SiO₂ (dust) MgO (dust) FeS (dust) Al₂O₃ (dust)

} #endif

✓ 10 dust species

DataLabel[i++]

DataLabel[i++]

DataLabel[i++]

= MgOName;

= FeSName;

= A1203Name;

CosmologySimulationInitialize.C

}

There are two ways of the first enrichment.

(Ritter et al. 2012, 2015, 2016; Sluder et al. 2015; Smith et al. 2015; Chen et al. 2017; Chiaki et al. 2018)

For EE, a previous work follow whole process of Pop II star formation.

Cloud fragmentation by dust cooling

Photoionization by Pop III star

H $_{\rm I}$ ionization photon emission rate 1.1 \times 10^{48} s^{-1}

Nucleosynthesis just after Big Bang

< 3 minutes

 ✓ The first nucleosynthesis happens within the first ~3 minutes from Big Bang.
 ✓ Only H and He (and tiny fraction of Li) are synthesized.

The **first stars** are born in the **metal-free** gas.

The first stars (**Population III stars**) are formed in the different environment from the presentday stars.

To see this, we follow Pop III → Pop II star formation by numerical simulations.

